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Abstract The increasing application of network models to interpret biological sys-
tems raises a number of important methodological and epistemological questions.
What novel insights can network analysis provide in biology?Are network approaches
an extension of or in conflict with mechanistic research strategies?When and how can
network and mechanistic approaches interact in productive ways? In this paper we
address these questions by focusing on how biological networks are represented and
analyzed in a diverse class of case studies. Our examples span from the investigation
of organizational properties of biological networks using tools from graph theory to
the application of dynamical systems theory to understand the behavior of complex
biological systems. We show how network approaches support and extend traditional
mechanistic strategies but also offer novel strategies for dealing with biological com-
plexity.
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1 Revisiting research strategies in biology

Life scientists draw on a variety of research strategies to deal with biological com-
plexity. The success of molecular biology stems from the development of powerful
experimental strategies to manipulate molecular interactions underpinning biological
functions. Drawing on a variety of case studies, in Discovering Complexity Bechtel
and Richardson (1993/2010) described how biologists use the strategies of decom-
position and localization to reduce the problem space for biological analysis. These
strategies imply the provisional assumption that biological systems can be subdivided
into localizable operations of interrelated parts, organized in modules, from which the
workings of larger (sub)systems can be recomposed. The result of a successful use of
these discovery strategies, a mechanistic explanation, cites how interacting and hierar-
chically organized parts causally produce the phenomenon (Bechtel and Abrahamsen
2005; Bechtel 2011; Machamer et al. 2000).

Mechanistic research strategies are very productive if the system is organized in such
a way that functions can be localized to parts of a mechanism, and if the functioning of
such a part is due to its internal organization and largely unaffected by its context, so
that parts can be investigated in isolation (via decomposition) and their joint operation
is relatively easy to understand (via recomposition). However, analyses of complex and
highly integrated systems seem to defy these general assumptions, raising challenges
for traditional mechanistic strategies. Indeed, Bechtel and Richardson have viewed
decomposition and localization as heuristics because they fail in some cases. In the
new introduction to the 2010 edition of Discovering Complexity, they point to recent
biological research on complex networks (e.g., with extensive feedback loops) as cases
where decomposability may not hold—while leaving the philosophical investigation
of how such network research works as a project for the future. Additional strategies
of mechanistic research have been philosophically articulated by Craver and Darden
(2013). They cover not only experimental strategies for investigating mechanisms
and validating mechanism schemas, but also several conceptual strategies that guide
the formulation of hypothesized mechanism schemas, such as modular subassembly,
forward chaining, and backward chaining.

The recent accumulation of big quantitative datasets has motivated some life scien-
tists to utilize networkmodeling as a research strategy for the organization and interpre-
tation of data. Unlike mechanism diagrams, network models typically do not contain
details about the molecular properties of the components. By representing interactions
among a vast number of molecular species they enable an analysis of the organiza-
tional structure of larger systems, sometimes involving automated pattern-detection.
Geared toward the analysis of the complex structure and dynamic operation of large-
scale networks, these representational, computational, and analytical strategies appear
to go beyond the conceptual strategies that have been listed by Craver and Darden.

This calls for philosophers to revisit the question about prominent research strategies
for dealing with biological complexity. How do these new strategies relate to the
mechanistic research strategies described by Bechtel and Richardson (1993/2010)
and Craver and Darden (2013)? Are network approaches an extension of or at least
complementary to mechanistic strategies? And what, more generally, can network
analysis afford to researchers in the life sciences? In this paper we address these
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questions by focusing on how various types of biological networks are represented and
analyzed. We investigate a variety of network analyses used in systems biology with
the aim of identifying some of the distinctive aspects of this new research approach.
Focusing on a set of representational and analytical strategies relying on network
modeling, we also show that there are different ways of using network approaches
that have different philosophical implications.

For this purpose, we draw on a set of case studies from systems biology. Systems
biology differs from most other fields of biology by the lack of an explicit focus on a
specific domain of phenomena (in contrast to cell biology, molecular biology, genet-
ics, and developmental biology). Instead, the field distinguishes itself by new research
strategies such as analyses of large quantitative datasets on gene regulation and protein
interactions through computational simulations and network analysis. Although net-
work analysis precedes systems biology historically and has been widely applied in a
variety of other fields such as neuroscience, anthropology, and sociology (seeNewman
2010), the analysis of data-rich network models in systems biology presents a new and
interesting direction in need of philosophical analysis. The cases we examine all target
the organization and behavior of biological networks but also illustrate the diversity
of representational and analytical strategies used in systems biology research.

We begin with some examples in which graph theoretic tools have been success-
fully applied to investigate the organization of biological networks (Sects. 2.1–2.4).
These approaches have revealed important principles governing both the structural
organization of biological networks and the timing of activities involved in these net-
works. We then examine cases where network approaches help scientists to explore
and understand the dynamic features of biological system activity (Sects. 3.1–3.2).
Over the course of these different case studies, we gradually move from more local
analyses of specific components of complex systems to ones that address their global
operation (cf. Huang 2004). Roughly speaking, the localist approaches are more in
continuity with traditional mechanist research strategies than the globalist approaches.
However, given the diversity of the network research discussed and the absence of a
unique notion of ‘mechanistic’ research (e.g., there are mechanistic modes of explana-
tion as well as mechanistic tools of experimental discovery), for each case of network
research we will lay out in what aspects it is mechanistic, complements features of
mechanistic research, or departs from classical mechanistic strategies.

2 Graph-theoretic analyses of networks

Large data collection procedures have enabled biologists not only to identifymany dif-
ferent genes, proteins, and metabolites, but also to explore how they interact. To filter,
organize, and interpret this data, some biologists employ network modeling strategies
from graph theory, a field of mathematics which uses combinatorial and geometrical
principles to analyze relational structures (i.e., pairwise relationships between objects).
A graph is a collection of objects called nodes or vertices, and a collection of edges
or links, which represent connections between these objects. One distinctive feature
of this type of approach is that systems biologists often start with large numbers of
components, some interacting with a large number of other components.
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To construct a graph representation of a biological network, researchers often turn to
databases such as RegulonDB, BioGraph, Bioinformatic Harvester, or UniProt, from
which large datasets can be downloaded. In networkmodels, entities such as genes and
proteins are represented as nodes and the relations between them as edges. Edges may
be directed or undirected depending onwhether, for example, one has causal or merely
correlational information about their interactions. The goal of applying the tools of
graph theory to the study of these biological networks is to identify organizational
patterns that might be useful for predicting and explaining interesting features of bio-
logical organisms. We begin with efforts to identify small-scale patterns in biological
networks, and then consider strategies for analyzing the large-scale organization of
whole networks.

2.1 Motifs within networks

One strategy for extracting relevant patterns from large graphs is to focus on motifs—
patterns of connectivity between a small number of nodes (see Fig. 1 for an example).
Uri Alon, who pioneered this type of analysis, characterized these motifs as basic
computational elements (Shen-Orr et al. 2002; Alon 2007). As the word ‘computa-
tional element’ suggests, such a node cluster is deemed to be a module capable of
performing a specific function. Modules are connected to others to make the whole
functional system. Researchers who seek out computational elements often charac-
terize themselves as engaging in reverse engineering. This practice typically involves
taking an already made product and exploring its behavior and component functions
in systematic ways at many levels of description in order to build (synthesize) a similar
product. By using these methods, biologists try to identify the functional organization
of the system components, which gives rise to their global behaviors. This approach
is motivated by the idea that biological functions, like engineered systems, may be
characterized by basic organizational or ‘design principles’ (Green et al. 2015), as we
will see below.

Alon developed the network motif approach while exploring the organizational
structures of gene regulatory networks, based on data on transcriptional regulation in
bacteria. Reverse engineering in this context was highly exploratory in the sense that
little was known about the function and structure of the network. The group com-
piled data on transcriptional regulation from RegulonDB and additional sources and
represented the transcriptional interactions as a directed graph. He and his collabo-
rators noticed that particular subgraphs involving three or four nodes occurred with
a surprisingly high frequency. To elaborate this finding they developed and applied
algorithms comparing the frequency of all the subgraphs of a particular type in a larger
graph to randomly constructed graphs with the same degree of connectivity. The idea
is thus that automatic pattern detection (here via frequency of subgraphs) can be used
to identify organizational patterns of possible functional significance. Hypothesizing
that those subgraphs that appeared especially often were likely to display distinct func-
tions (like circuits in engineered systems), Alon and colleagues represented them as
in Fig. 1 and then used computational modeling to analyze their functionality.
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Fig. 1 Example of a motif. A
coherent feedforward loop of the
sort investigated by Alon

Figure 1 shows one of the three-node subgraphs Alon found to be especially fre-
quent, a motif which he labeled a coherent feedforward loop. In it, node X (which
receives the external signal from S) is connected to node Z both directly and indi-
rectly through node Y. By analyzing the motif from an engineering perspective, Alon
showed that when Z requires both of its inputs to respond, the network constitutes a
computational element that will function as a persistence detector—Z will be active
only with a sustained stimulation from S. This design is particularly useful in con-
texts in which chemical signals may be generated spuriously and where engaging in
an activity such as synthesizing a protein unnecessarily can be particularly wasteful.
Using simple Boolean modeling, Alon demonstrated that the coherent feedforward
loop would perform this elementary computation as long as it takes time for a node
to become active (see Alon 2007). Since each node ceases to be active once input
ceases and the activation through the indirect pathway takes longer than through the
direct pathway, Z will be activated only when X remains active long enough for Y to
become active so that both X and Y will be simultaneously sending input to Z. He
also showed that changing Z to operate as an OR-gate (Z is active when at least one
of its two potential inputs obtains) will yield a different behavior. Now Z continues to
function even in the face of brief interruptions in the activity of X. This sign-sensitive
accelerator design can be important in noisy environments in which it takes time to
complete a process.

Following the initial analyses, software for automated motif-detection was devel-
oped. This enabled a more extensive search for network motifs in different biological
systems and at different levels of biological organization. Some critics have ques-
tioned Alon’s methods of evaluating whether the frequency of subgraphs is beyond
what would be expected by chance (Beber et al. 2012). Searching for overabundant
circuit patterns in networks can, however, be useful as a heuristic regardless of the
soundness of the null hypothesis used in the comparison, provided that the network
analysis is combined with other strategies that account for the details that network
analyses neglect or distort.1 Moreover, the research sparked a debate on whether

1 One limitation of this kind of network analysis is that it represents regulatory interactions as pairwise
relations between discrete and static objects (nodes in the network) and assumes that these are uniformly
distributed throughout the cell. However, in many regulatory systems (e.g. in development) the spatial
distribution of molecules is crucial and needs to be accounted for. Mechanistic research providing such
details can therefore provide a useful corrective to network analysis. (We would like to thank an anonymous
reviewer for stressing this point.)
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functions are determined by the organizational structure of the regulatory circuits
and can be generalized from an abstract analysis (Green 2015; Levy and Bechtel
2013). A requirement for such generalizations is that the mathematically computed
motif functions can be isolated from the network as a whole in living cells. Initial
experiments on extensively studied regulatory systems in E. coli provided an affir-
mative answer (Mangan et al. 2003). But some have cautioned about the situation
for more complex organisms where the same motifs are also present (Isalan et al.
2008). In response, more recent research has focused on specifying the conditions
(parameter spaces) for which the identified motif functions hold (Tyson and Novak
2010).

The network motif approach shares with mechanistic strategies the heuristic
assumption of near-decomposability of biological systems, and network approaches
and mechanistic research strategies are intertwined in the experimental investiga-
tion of the computed functions. Individual motifs that have been identified function
similarly to what (Machamer et al. 2000) call mechanism schemas (see also Craver
and Darden 2013). The computational analysis of individual motifs is carried out at
a higher level of abstraction than typical research in molecular biology, insofar as
motifs abstract away from a wide range of details about the parts and operations
of specific molecular mechanisms (Levy and Bechtel 2013). But the very search
for motifs also provides a novel heuristic strategy for detecting regulatory units—
the computational screening of vast networks—thus extending mechanistic research.
This goes beyond the conceptual as well as experimental strategies of mechanism
discovery that Craver and Darden (2013) have compiled: Alon’s approach allows
for motif-detection from a representation of the large-scale structure of regulatory
connections, without background information on specific functions of the subsys-
tems. The detection of frequent organizational patterns allows for a data-intensive
exploratory analysis, revealing motifs which are amenable to further investiga-
tion.

We now turn to network analyses that reveal organizational patterns in networks
at a scale above that of small subgraphs. As we will see, within these network
approaches, researchers often differentiate modules that correspond to particular
mechanisms, but, unlike in the case of more traditional mechanistic approaches,
the analytical emphasis falls on how these modules are situated in larger net-
works.

2.2 Tools for analyzing large-scale networks

Graph theorists have developed various measures to characterize and analyze the
patterns of interactions among the many components of graphs and to make inferences
about how they function together. These take a somewhat different form if the edges
in the graph are directed or undirected; we will consider only undirected graphs and
focus on three quantitative measures that have played an especially prominent role in
mathematical analyses of networks.

As a global property of a whole network, the mean shortest path length (henceforth,
MSPL) measures the average, for all pairs of nodes, of the minimum number of edges
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that must be traversed to get from one node to the other.2 Shortest paths are of interest
in understanding how quickly or slowly activity at one node may affect activity at
another; MSPL is then a measure of how quickly signals can be passed between
different components of a network. Second, the clustering coefficient C is the degree
to which a given node’s neighbors are connected among each other. When C for a
given node is high, there will be high connectivity in the neighborhood around that
node; these connected nodes are often viewed as modules. Below we will illustrate
why the average clustering coefficient across all nodes (as a global network measure)
is of analytical value. Finally, the degree k of an individual node is the number of other
nodes to which it is connected; and the network-wide degree distribution p(k) is the
probability that a given node will have degree k.

Most mathematical analyses of graphs in the mid-20th century focused on either
randomly connected networks, which are characterized by a short MSPL and a low
average clustering coefficient, or lattice structures, which have a long MSPL and high
average clustering. Watts and Strogatz (1998) attracted much attention when they the-
oretically introduced the class of small-world networks that exhibit both short MSPL
and high average clustering. They argued that these characteristics are important as
they allow for a high degree of coordination throughout the network yet also spe-
cialization of function in clustered units. This illustrates how some representational
notions and analytical strategies of network research are not somuch about the specific
functioning of a network segment—as in the analysis of individual motifs discussed
above—but about a network’s overall organization. Network researchers focusing on
gene-regulatory, protein interaction, and metabolic networks in a variety of species
found that these biological networks indeed exhibit small-world structure.

However, it turns out that, as a matter of statistical probability, nearly every net-
work with a large enough number of nodes and connections will be a small-world
network (Newman 2010). This motivated the search for a more precise description
of biological networks using the tools (and measures) of graph theory. Historically,
graph theorists assumed that the degree distribution p(k)would be normal (e.g., Gaus-
sian), but Barabási and Albert (1999) found that in many real world networks, node
degree is distributed according to a power law of the form p(k) = c · k−a (where the
parameter a is often between 2 and 3). This exponentially declining distributionmeans
that there is great variation in the number of connections for individual nodes. Most
nodes have a very low degree (e.g., only 1 or 2 edges to other nodes) but a small num-
ber of nodes—called hubs—have a many connections. Since the tail of a power-law
distribution extends over many orders of magnitude and the node degree across the
system cannot be characterized using a unique scale, these networks have been called
scale-free networks.

An analytical implication of a scale-free network organization is that it tends to
exhibit robustness, i.e., its functioning is usually not seriously affected by perturba-
tions. This is because the elimination of a highly connected hub may detrimentally
impact functioning, most nodes in a scale-free network are not hubs and have only
small impact on the overall network. Given that robustness is a biologically important

2 In this context, ‘path length’ does notmeasure physical distance (only number of edges) and ‘organization’
does not track spatial organization of the target system (but rather its functional organization).
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feature for a system to have, this highlights the usefulness also of global measures
of network structure. In the specific philosophical context of explanation, Huneman
(2010) has argued that the explanation of a network’s robustness in terms of its scale-
free structure is an instance ofwhat he calls topological explanation,which he deems to
be non-mechanistic, on the grounds that an account purely in terms of structural orga-
nization does not explain by tracking activities during a mechanism’s operation (see
also Brigandt et al. 2017; Jones 2014). A discussion of the scope of specific accounts
of explanation is beyond the scope of this paper, but we mention these aspects to
highlight how representing abstract system organization and topology is a strength of
network approaches that extends the analytical toolkit in biological research.

As concrete illustrations of the potential of using graph theoretical methods and
measures in the study of biological organisms, we turn in the next two subsections
to discussing two network analyses; one revealing hierarchical modular organization
within metabolic networks, the other temporal dynamics of protein-protein interac-
tions.

2.3 Hierarchical modular networks

Traditional mechanistic approaches identify modules through research strategies that
start from a specific phenomenon (e.g., a concrete function), identify a system taken
to be responsible for it, and decompose that system into functionally relevant compo-
nents (Bechtel and Richardson 1993/2010). In contrast, graph-theoretic analyses that
abstractly represent the organization of large numbers of components and their inter-
actions identify modules as classes of nodes that are highly interconnected (compared
to the degree of connectedness across modules). Hence, graph-theoretic approaches
offer a new perspective on modules, highlighting how they are situated in the broader
organization of the network. One type of analytical strategy that has gained consid-
erable popularity focuses on the hierarchical organization of many modules in larger
networks.

The characterization of hierarchical modular networks was introduced by Ravasz
et al. (2002) to resolve a tension they had identified between two network measures
that were concomitantly exhibited by a wide class of biological networks. In analyz-
ing metabolic networks in E. coli, Wagner and Fell (2001) had shown that they both
(1) have high average clustering—standardly associated with the presence of fairly
isolated modules—and (2) are scale-free, having some hub nodes with many connec-
tions across the network. So, is the metabolism of E. coli organized as a collection of
specialized modules or as a highly integrated network (Ravasz et al. 2002)?

The combination of modules and nodes with high degree (which Ravasz et al. found
in 43 other species) seems contradictory—modules are relatively isolated, whereas
nodes with high degree interconnect the whole system. Ravasz and colleagues pro-
posed to resolve this tension by constructing a model of a network that would exhibit
both properties. They began with a module of four completely interconnected nodes
arranged as in Fig. 2A. They then created three replicas, connecting the peripheral
nodes of each replica to the central node of the original module (Fig. 2B). This pro-
cedure was then iterated (the next iteration is shown in Fig. 2C). The network that
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(A)

(B)

(C)

Fig. 2 TheprocessRavasz et al. employ to construct hierarchicalmodular networks that havehigh clustering
and are scale-free. The module shown in A is replicated three times, where in B the peripheral nodes of each
replica are connected to the central node of the original module. This process is iterated one more time in
C, but can be iterated indefinitely

resulted after several iterations exhibits high average clustering (C ∼= 0.6), due to it
being built by replicating highly-clustered units, and is scale-free (the parameter a of
the power law is 2.26), as a consequence of connecting the peripheral units in a replica
only to a common unit in the original.

Ravasz and colleagues observed that nodes that appear in the center of the network
model have the highest degree (i.e., are hubs) and the lowest clustering coefficient,
while the nodes at the periphery of each of the super-modules have low degree and the
largest clustering coefficient. In between are nodeswithmoderate degree andmoderate
clustering; these serve to link the smallest modules into larger modules. This creates
a hierarchy in which the nodes generated at each replication step are connected not
only to their own central node but also to the central node of the entire structure.
Ravasz et al. referred to this network structure as a hierarchical modular network and
proposed that networks organized in this way might account for the combination of
high clustering and scale-freeness in the metabolic networks of the 43 species they
examined.

In particular, Ravasz et al. focused on showing that their theoretical model can be
used to represent the organization of themetabolic network ofE. coli. They considered
each substrate as a node and chemical interactions between substrates as edges, and
they executed several simplifying procedures that did not distort the topology of the
network. To identify modules, they constructed an overlap matrix (Fig. 3) that shows,
for each pair of substrates, the probability that any two substrates i and j are connected
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Fig. 3 Overlap matrix in which colors indicate degree of overlap. At the bottom the chemical classes of
the molecules is indicated and on the top and right the result of a clustering algorithm are shown. From
Ravasz et al. (2002). Reprinted with permission from AAAS

to the sameother substrate (awhite empty spot in thematrix indicates that the substrates
are not connected to any common substrate, green that the two substrates are connected
to very few of the same substrates and dark red indicates that they are connected
mostly to the same substrates). The overlap matrix representation provides the first
step in the system analysis from which one can visually identify regions with high
overlap and regions with less substrate overlap. The high overlap regions were taken
to correspond to the component modules in the proposed type of hierarchical modular
organization.

Since the network was assumed to be hierarchical, Ravasz et al. then used a clus-
tering algorithm to group substrates based on their overlap; the result of this analysis
is shown along the top and right-hand edges of the matrix square in Fig. 3. Because
these clusters closely correspond to known chemical groups, they were interpreted
as picking out modules that correspond to biochemical functions. Ravasz et al. then
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focused in more detail on the module corresponding to pyrimidine metabolism and
linked each sub-module to particular pathways in the module.

Ravasz et al.’s analysis showed that modules closely corresponding to traditionally
characterized biochemical pathways or mechanisms can be recovered from large-scale
networks. Noting that the fit between the modules derived via their graph-theoretical
analysis and previously established metabolic pathways is not perfect, they suggested
that “further experimental and theoretical analyses will be needed to understand the
relation between the decomposition of E. coli metabolism offered by our topology-
based approach and the biologically relevant subnetworks” (Ravasz et al. 2002, p.
1555).

We conclude that while Ravasz et al. succeed in recovering classically defined
mechanisms, their discovery strategy differs from more traditional methods of inves-
tigating biological modules in the following way. It starts with the whole network
and only arrives at modules by identifying clusters in that network—in contrast to
starting with an isolated mechanism and looking out to other mechanisms. This hier-
archy, achieved by nodes with low clustering but high degree that serve as hubs that
connect modules, provides the basis for coordinated regulation of flux in different
biochemical pathways. By invoking the graph-theoretic measures of clustering and
node degree and characterizing a network architecture compatible with high values
on both, Ravasz et al. take advantage of the representational power of graph theory.
They propose a newway of thinking about biological mechanisms, according to which
they can both be specialized and closely integrated into a larger network—where the
latter goes beyond the assumption of traditional mechanistic research that systems can
be treated as decomposable. And unlike standard approaches in molecular biology,
these network analyses abstract from the molecular details and focus instead on the
extracted graph structure which is then shown to represent a type of organization that
is biologically relevant.

2.4 Temporal dynamics of activity in networks

Most graph-theoretic studies of biological networks offer a static view of the sys-
tems under investigation—edges between nodes represent activity that occurs at some
time, but the timing of activities at nodes is not differentiated. In real cells, different
metabolic or gene expression activities occur at different time-scales and cellular func-
tioning requires the precise coordination of a large number of events. Accordingly, a
proper understanding of cellular function requires the identification of the temporal
execution of the interactions characterized by edges. How can network approaches
and graph-theoretical representations incorporate the temporal aspects of biological
phenomena? We address this question by analyzing a study by De Lichtenberg et al.
(2005) of protein–protein interactions during the cell cycle of yeast.

Protein–protein interactions (PPIs) occur when two or more proteins are shown
to be able to bind, which is taken to indicate that they might interact in living cells.
High-throughput proteomics technologies have allowed the collection of numerous
PPI datasets for many organisms that have led in turn to the development of PPI
network analyses investigating principles of cell organization and function. The gen-
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eral goal of such network approaches is to identify complexes of proteins that are
co-localized and co-expressed, and to establish how they are organized as modules to
perform specific functions within cells. Although the interpretation of PPI data raises a
series of methodological concerns (Mackay et al. 2007; Chatr-aryamontri et al. 2008),
de Lichtenberg and colleagues are representative of a larger community of scientists
who have argued that robust biologically relevant conclusions can be derived from
network analyses by integrating various types of data. Working on budding yeast,
Saccharomyces cerevisiae, the researchers integrated information about protein com-
plexes from large-scale static PPI datasets with time series data about gene expression
data in order to investigate the functional organization of protein complexes during
the yeast cell cycle.

Gene expression data allowed de Lichtenberg et al. to distinguish so-called dynamic
proteins, which are expressed only at specific steps in the cell cycle, from static pro-
teins, which are constitutively expressed. They then used the PPI data to link the
dynamic proteins to those expressed constitutively. Out of the 595 dynamic proteins
identified in the study, the researchers focusedon the interactions between184dynamic
proteins and 116 static proteins that are represented by the graphs in the center of Fig. 4.
Unlike the metabolic network in the previous example, these protein interaction net-
works do not form a completely connected graph but a collection of independent
graphs. The 412 dynamic proteins for which no interactions could be identified are
shown as unconnected circles around the outside. The researchers used color to repre-
sent the phase of the cell cycle during which these proteins are present (e.g., green for
the S phase). The same coloring scheme is used to represent the phase of the cell cycle
at which the proteins shown in the center are expressed, with white circles indicating
constitutively expressed proteins.

The center of Fig. 4 shows 29 graphs of three or more interacting proteins, most
of which are associated with particular well-characterized cell-cycle functions. Some
of these graphs include only dynamic proteins that are expressed at the same phase
in the cell cycle, but most present a much more complex pattern involving proteins
expressed constitutively or at different phases in the cell cycle. For instance, the Sister
chromatid cohesion graph contains a sizable subgraph of dynamic proteins expressed
at the same phase of the cell cycle, while theCdc-cyclin graph captures amore complex
patterns of interacting proteins. The coloring scheme introduced by de Lichtenberg et
al. facilitates the representation of these temporally heterogeneous modules. Focusing
on three of these modules (additional modules are discussed in the supplemental
material) the authors show how their integrative approach can be used for further
analytical steps: (i) to predict new functional roles for known protein complexes, (ii)
to formulate a general principle that governs the construction of protein complexes,
and (iii) to provide a dynamic characterization of the interaction between static and
dynamic protein complexes. We discuss each of these in turn.

First, some of the modules represented in Fig. 4 were newly discovered through
analysis of the temporal expression data. An example is the Nucleosome/Bud for-
mation module shown in detail in Fig. 5A. The newly identified module includes
two proteins, Nis1p and Yol070p, whose function had not been previously identified.
By linking them with other proteins in a temporally expressed module whose func-
tional role was already known, and connecting this module to two others, the Sister
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Fig. 4 Protein–protein interaction networks in yeast identified by de Lichtenberg et al. The color-coding
represents the period in the cell cycle in which specific proteins are synthesized. From De Lichtenberg et al.
(2005). Reprinted with permission from AAAS

Chromatid Cohesion complex and the Nucleosome complex (again, whose functions
were known), the researchers were able to suggest functional roles for these pro-
teins. For instance, the previously uncharacterized phospho-protein Mmr1p has been
shown to have a cell-cycle role in activating transcription at the G2/M cell phase
transition.

Second, from the analysis of temporal expression data, de Lichtenberg et al. infer a
general principle of construction for yeast protein complexes: they are assembled just
in time for their use. Many of the proteins in a complex are constitutively expressed
and already available, but only assembled into the requisite complexwhen one or a few
additional proteins are synthesized. This process contrasts with the pattern McAdams
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Fig. 5 Detailed representation of three of the networks shown in Figure 4. A A network only identified
through the use of information about temporal expression of proteins. B A network illustrating just-in-time
assembly.CA network illustrating a node that serially interacts with proteins synthesized at different times.
From De Lichtenberg et al. (2005). Reprinted with permission from AAAS

and Shapiro (2003) found in bacteria—there all the proteins needed to form a complex
are synthesized just when the complex is formed. De Lichtenberg et al. illustrate just-
in-time assembly in Fig. 5B. The members of the pre-replication complex, Orc1p to
Orc6p, are all constitutively expressed and bound to DNA throughout the cell division
cycle. But their analysis reveals that at different phases in the cycle different proteins
are synthesized and bind with the Orc proteins.3

Third, de Lichtenberg et al. advance a dynamic perspective on the previously iden-
tified module consisting of Cdc28p and nine associated cyclins (which are proteins
regulating the cell cycle progression). Previously all the cyclins had been viewed as
active parts of the module at all times even though Cdc28p can only interact with a
single cyclin at a time. De Lichtenberg et al. established, as shown in Fig. 5C, that
eight of the cyclins are expressed at different phases of the cell cycle. Thus, although
qualifying as a module in the non-dynamic network (which shows any interactions
occurring at some time), a dynamic analysis reveals Cdc28p to be a dynamically
changing collection of entities: different cyclins constitute it at different phases in the
cell cycle. The dynamic study also identified Ypl014p, whose function had previously
been unidentified, as a member of Cdc28p complex.

Overall, while proving to be a fruitful means of discovering various molecular
features, this type of investigation does not with particular functions (as in classi-
cal mechanistic research). Rather than beginning with a mechanism and determining
its temporal patterns, as in more traditional mechanistic research, the strategy con-
sists in building a system-wide representation of the time of expression across the
whole network which reveals how nodes in a cluster relate temporally throughout the
cell cycle. Moreover, this focus on the temporal dimension of the protein interaction
network gives rise to a research strategy for discovering new mechanisms and their
organization.

3 Mcm2p and Mcm3p, along with Cdc46p, Cdc47p, and Cdc54p are all synthesized during the M/G1 cell
phase transition and form a complex with constitutively expressed Mcm6p. Next Cdc6p (also expressed
at the M/G1 transition) recruits this complex to the Orc complex during the G1 phase. Finally, Cdc45p is
expressed early in the S phase and is proposed to then recruit the whole complex to the site where replication
originates.

123



Synthese

3 Dynamical systems analyses of biological networks

Although often represented as operating at steady-state, living systems are highly
dynamic, transitioning between different operating states. The behavior of components
of a biological system is dependent on such contexts and in this section we focus on
attempts to deal with the context-dependency of causal effects as biological networks
enter into different regimes over time. We outline important characteristics of these
system dynamic approaches and discuss their philosophical implications by drawing
on similarities and differences between two related, yet different, approaches. Both
are illustrated in the context of cancer research, a field where analyses are particularly
important since cancer involves altered dynamical behavior of cells. The first uses
systems analysis as a stepping-stone to identifying specific molecular components
that are causal difference-makers, and as such retains strong links to mechanistic
approaches. In contrast, other system theoreticians aim to go beyond the focus on
properties of specific molecular components. To clarify this, Sect. 3.2 analyzes the
philosophical implications of an analysis inspired by Dynamical Systems Theory
where network-wide activity is captured by mathematical models and investigated
via state-space analysis.

3.1 Difference-making in dynamical networks

One of the cornerstones of molecular biology is reliance on difference-making exper-
iments to identify the causal roles of different components of a system (Woodward
2003; Craver and Darden 2013, Chap. 8). Complex systems, however, pose two chal-
lenges for this type of experimental practice. First, high-throughput methodologies
offer a vast number of potential targets for experimental intervention, and testing all
of them individually in various combinations would be prohibitively time and resource
demanding. How do scientists narrow the space of promising candidates for interven-
tion? Second, the problem of context-sensitivity: as complex systems change their
state over time it is possible for one and the same intervention on a component to
have different, or even opposite, effects. How is the causal structure to be investigated
when effects are context-sensitive? The present section looks in detail at two cases
involving apoptosis, or programmed cell death, in which network strategies helped
scientists to elucidate the behavior of the systems—leading to the identification of a
partial mechanism underlying cellular context-sensitivity. Our discussion shows that
thinking in terms of large-scale networks of interactions is both analytically useful
and experimentally productive.

Janes et al. (2005) investigated the cellular changes that determine whether or
not human colorectal adenocarcinoma cells enter into apoptosis. Previous research
had generated conflicting data about the role of c-Jun N-terminal kinase (JNK): one
study found it to be pro-apoptotic; another found it to be anti-apoptotic; and yet a
third found it to be unrelated to apoptosis. The authors hypothesized that changing
cellular network states over time might explain these results—JNK as an individual
difference-making cause would have different effects depending on the state of the
surrounding signaling network. To test the hypothesis, they systematically exposed
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cells to different regimes of apoptosis-related cytokines such as tumor necrosis factor
(TNF), epidermal growth factor (EGF), and insulin. Levels of JNK and apoptosis were
measured for each regime. The findings of this combinatorial experiment supported the
context-sensitivity hypothesis: depending on the levels and combinations of cytokines,
increases in JNK were seen to be correlated with increases in apoptosis, decreases in
apoptosis, or no change (see especially Fig. 1B–E in Janes et al., not reprinted here).

Reasoning in terms of states of cellular networks provides a conceptual strategy for
thinking about context-sensitive effects such as those of the protein JNK. Janes et al.
focused on the downstream effects of TNG, EGF and insulin: they analyzed data on
a large number of quantitative measures (maximum signal, mean signal, area under
the curve, activation slope, and decay rate) of cellular proteins that were known to be
downstream effects of these signal molecules. Applying the statistical tool of prin-
cipal components analysis, the authors showed that the different cytokines activated
different parts of the overall network: while TNF activated a pro-apoptosis group of
components, EGF and insulin activated a pro-survival group of components. Interest-
ingly, the reaction to combinations of TNF, EGF, and insulin was not predictable by
merely summing the individual responses. Instead, the statistically identified groups
exhibited specific interactions when TNF+EGF or TNF+insulin were paired. While
EGF mainly antagonized TNF’s apoptotic response, insulin exerted its antagonistic
effect to TNF by activating the pro-survival components of the network. This indicated
the existence of different underlying mechanisms of signal interaction.

Janes et al. thus provided evidence for the existence of both a pro-apoptosis cluster of
cellular signals and a pro-survival cluster of signals. Various cytokines were shown to
activate one and antagonize the other when combined in different ways. Thus, thinking
in terms of changing network states could in principle explain the inconsistent results
that had been obtained concerning the JNK protein. Depending on network states, the
protein was in fact pro-apoptotic, anti-apoptotic, or neutral.

A subsequent study from the same laboratory, Lee et al. (2012), applied the strat-
egy of thinking in terms of changing network states to the treatment of cancer. In the
spirit of the conclusion from Janes et al. they proposed that the causal effectiveness of
chemotherapeutic agents might depend on the state of cellular networks. Recogniz-
ing that this undermines the “component-by-component approaches to understanding
human disease” (p. 780), Lee et al. posed new epistemic questions: How can we
detect coordinated changes in large numbers of cellular components that serve similar
functions? How can the most relevant of these components be identified for further
experimental investigation?

Like Janes et al., they began with a systematic combinatorial experiment. They
exposed a particular line of cancer cells—triple-negative breast cancer (TNBC) cells—
to combinations of signaling inhibitors and DNA-damaging agents (to which TNBC
cells are particularly resistant). As in the previous study, apoptosis was the mea-
sured effect. Importantly, the authors not only tested different combinations of signal
inhibitors and chemotherapeutics. They also studied time-staggered presentations in
which cells were given signal inhibitors a variable number of hours before or after
chemotherapeutic agents. The results of this systematic approach were striking: giving
erlotinib (an inhibitor of EGF receptors) several hours before doxorubicin (a DNA-
damaging compound) resulted in a marked, several-fold increase in levels of apoptosis
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compared to giving erlotinib alone, doxorubicin alone, or erlotinib after doxorubicin.
Importantly, this increase in the apoptosis response was found only in TNBC cells and
not in other cancers.

As an interpretation of these findings, the authors proposed that giving erlotinib
changed the state of one or several cellular signaling networks in TNBC cells, thereby
rendering the cells more susceptible to DNA damage induced by doxorubicin. The
time delay required for the intervention to work (a delay of roughly 24 hours was
found to be optimal) was seen as consistent with the time required for network state
changes to take effect, since this may require changes in translation and transcription.
To investigate this hypothesis, Lee et al. employed high-throughput methodologies on
both TNBC and other cancer cells to identify thousands of genes that are differentially
expressed under erlotinib treatment. Using the GeneGO pathway annotation software,
they linked these genes to functions such as DNA damage response, apoptosis, and
inflammation.

To gain a more precise understanding of the signaling network changes underlying
the increased sensitivity to doxorubicin in erlotinib-treated cells, the authors identified
35 candidate genes for a detailed high-throughput analysis (including some previously
known genes and some that they found to be differentially expressed under erlotinib
treatment). Using principal component analysis combined with partial least-squared
regression they statistically identified a cluster of differentially expressed genes in
TNBC cells that were not found in other cancer cells. They proposed that these dif-
ferentially expressed genes were responsible for the increased sensitivity of TNBC
cells to the time-staggered treatment with erlotinib and doxorubicin. In particular, they
targeted four cellular components in TNBC cells that were strongly correlated with
increased doxorubicin efficacy of which the most strongly correlated was cleaved
caspase-8. To determine whether caspase-8 really is a cause influencing increased
sensitivity to doxorubicin treatment, they created small interfering RNA (siRNA) to
knock out caspase-8 in TNBC cells. The results of this difference-making experiment
confirmed the causal interpretation of the correlation found previously: The interven-
tion reduced the sensitivity of TNBC cells to doxorubicin to the same level as found in
other cancer cells. Thus, the success of the time-staggered erlotinib and doxorubicin
treatment in TNBC cells could be assumed to involve a caspase-8 pathway specific to
these cells.

In this section we have discussed two challenges for difference-making method-
ologies in the case of complex systems: first, the effects of particular interventions
can vary with context; and second, the systems are generally made up of too many
components for component-by-component analysis to be feasible. We have seen that
network strategies help in dealing with context-sensitivity as well as system size.
In one of the cases discussed, investigators found that the same chemotherapeutic
agent had different causal effects depending on the previous treatment of cells with
cytokines. To elucidate this context sensitivity, the investigators first used combinato-
rial experiments to determine which combinations of cytokines (and which order of
administration) made cells particularly vulnerable to chemotherapy. High-throughput
methodologies then revealed the large-scale changes of cellular gene expression under
cytokine treatment. The investigators found that individual cytokines caused coordi-
nated changes of whole sets of cellular components, which suggested changes in
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the functional state of entire regulatory networks. In a classical difference-making
approach, themany affected componentswould have been intervened uponone-by-one
in order to test their relevance to the cell’s susceptibility to chemotherapy. Using statis-
tical techniques for network analysis, however, the investigators were able to pinpoint
components whose activity seemed to be particularly closely correlated with suscep-
tibility to chemotherapy. The most promising candidates were then subjected to quite
classical difference-making experiments in order to determine their actual causal roles.

We here see an extension of classical causal and mechanistic methods by network
approaches. In attempting to identify molecular components of interest, the research
maintains a tight connection to mechanistic approaches. However, it also consider-
ably expands the set of conceptual strategies for analyzing molecular mechanisms
that philosophers have previously articulated to include both statistical methods and
analytical strategies for dealing with interconnected complex systems. In the next
section we will encounter network researchers who propose a more radical reconcep-
tualization of biological systems.

3.2 Cancer as dynamic attractor states

Some systems biologists have proposed a shift of focus from particular mechanisms
that are involved in individual cases of cancer to the multitude of ways the organiza-
tion of cells and tissues can be disrupted and enter specific dynamic states. The focus
on activity states of a regulatory network rather than specific mutations is motivated
by recent empirical studies showing that there is high heterogeneity of mutations in
sequenced tumors for non-hereditary cancers (Creixell et al. 2012). The importance
of context and reversible dynamics of cell states is further supported by experimental
interventions showing that normal cells can turn cancerous when placed next to neo-
plastic tissues and that cancer cells can be normalized if transplanted from tumors to
a location next to normal stroma (Lang et al. 2013).

To account for such experimental results, some researchers appeal to the mathe-
matical framework of Dynamical Systems Theory (DST). This approach represents
the dynamic state of a system in a state space in which each point represents a possible
state of the whole system (e.g., expression rates of genes or concentrations of various
proteins). Activity of the system is represented as a trajectory through state space. By
mapping the trajectories that biological systems do or can follow, investigators can
identify attractors to which the systemwill evolve and where it will remain unless per-
turbed. A distinctive feature of this modeling strategy, which we will illustrate below,
is that the account is based on concrete biological interaction networks, yet—unlike
the studies discussed in Sect. 3.1—the theoretical analysis also captures and visual-
izes different dynamic possibilities, i.e., system state trajectories that are biologically
possible or impossible (beyond a single trajectory taken by an experimental system).

Kauffman (1971) pioneered the idea of describing cancer in terms of attractor states
over 40 years ago, building on Waddington’s (1940, 1953) much older ideas of epi-
genetic landscapes. While this approach initially appeared rather speculative, new
experimental technologies are providing data that can be used for the development of
models and to empirically test the predictions they make. Proponents argue that view-
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ing cancer in terms of dynamic attractor statesmay resolve someof the problems facing
the traditional view that cancer is caused by somatic mutations or specific molecu-
lar pathway-interfering causes (e.g., Huang 2011). The view of cancers as attractors
aligns with the ‘cancer stem cell hypothesis’ that highlights similarities between car-
cinogenesis and developmental processes, such as clonal expansion, fast proliferation,
sustained angiogenesis, and tissue invasion. To make sense of how cells with the same
genome can differentiate into qualitatively distinct cell types, some researchers inves-
tigate the conditions that enable both transformations and stable dynamic states of
gene regulatory networks. An important question in this context is why living systems
often display stable discrete (or discontinuous) phenotypes, rather than continuous
ones that would follow if genetic changes directly caused phenotypic changes (Jaeger
and Crombach 2012).

One approach to understanding the lack of continuity between phenotypic states,
including normal and cancer cell states, is to investigate whether there are constraints
that make intermediate states unstable so that they follow trajectories into one or
another attractor. Kauffman (1969) simulated hypothetical networks in which genes,
depending on their states, turned other genes on or off. By starting with different ran-
dom inputs, he showed that they settled into stable states that were largely independent
of the initial states of specific network nodes. Kauffman argued more generally that
even highly complex networks often converge to a limited set of stable states because
of internal constraints.

New experimental technologies in genomics have started to provide insights into
how the organizational structure of gene regulatory networks, through inhibitory and
activating connections, may constrain, but also stabilize, the transcriptome signatures
of different cell types.We illustrate this approach for a very simple network employing
a double negative feedback loop (Fig. 6, see also Tyson and Novak 2010). Its two
nodes might represent genes whose products inhibit each other’s expression (A and B
in Fig. 6). The possible dynamic states and trajectories of the two-node network are
represented on as a state space in which the expression levels of genes A and B are
represented on the corresponding dimensions. The third dimension, labeled ‘potential’
(or other times, ‘energy’) indicates how stable (low value) or unstable a particular
combination of expression levels is. Trajectories are paths from less stable states to
more stable ones, ultimately terminating in attractors. The dynamical landscape shows
the state space trajectories the systemwould follow from various possible states to one
of the two attractors. In this case, each of the two attractors consists in high expression
of one gene and low expression of the other. The simple network illustrates a common
dynamics that is found in many biological systems. For instance, the situation in
Fig. 6 corresponds to a simplified model used to describe the development of different
segments in Drosophila (an instance of discontinuous phenotypic patterns). Protein
expression of the gap genes giant and Krüppel never co-occurs in the same nucleus
because the stable expression patterns are mutually exclusive (Jaeger and Crombach
2012).4

4 The expression patterns change in response to initial conditions, in this context maternally expressed
transcription factors that can be measured experimentally and manipulated, and the state space analysis can
be based on systems parameters fitted to gene expression data.
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Fig. 6 The possible trajectories of a double-negative feedback network between two genes are plotted on
a landscape. It has two attractors (stable states of network activity), where some unstable states are also
shown. Reprinted from Huang et al. (2009) Copyright, with permission from Elsevier

Some researchers have suggested that this visual representation strategy can be also
used to indicate what happens in complex networks with thousands of genes. It would
require a high-dimensional state space to capture the multitude of stable states, but
the number of attractors need not increase proportionately. Because many molecular
changes can lead to the same stable cell state, and many lower-level changes will have
no effect on the overall state of the system, Huang (2011) argues for a shift of focus
from linear molecular pathways (which have been the focus of mechanistic research)
to dynamic states of whole networks. Due to the high dimensionality of state spaces
for complex networks, this kind of analysis is dependent on advanced representational
strategies that transform causal interactions into dynamic states of whole networks.

A network with many nodes but whose dynamical profile (due to constraints within
the whole network) has a limited number of attractors is shown in Fig. 7. Note that in
addition to the two trajectories to stable, mature cell types (indicated by solid arrows),
there is another trajectory indicated by a dotted arrow that terminates in an attractor
corresponding to cancer. Along the trajectory is a hill denoted as an epigenetic barrier.
Under normal conditions the system will not cross this barrier, but perturbations, such
as somatic mutations, can have the effect of lowering the barrier, allowing the system
to settle into the cancer attractor. This landscape representation thereby reveals that the
available trajectoriesof network activity can change as either the network organization
is altered (e.g.,mutations in a cell’s gene regulatory network) or the conditions inwhich
the system is operating is altered (e.g., epigenetic and pharmaceutical influences).

Thinking in terms of cancer attractors leads to a shift of focus from how mutations
interfere with specific activities in cells to how they reshape the landscape, alter the
possible trajectories, and allowaccess to newcancer attractors (Huang et al. 2009). This
representational strategy using landscapes also provides the analytical insight of how
the same mutation can be associated with both carcinogenesis and tumor suppression,
depending on the current state of the network as a whole. If the cell is in the normal
state, a mutation lowering the barrier between this state and a cancer attractor can
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Fig. 7 Illustration of multi-stable dynamical profile of a complex network. Reprinted from Huang et al.
(2009) Copyright, with permission from Elsevier

allow the system to enter the attractor. If, however, the cell is already trapped in the
cancer attractor, the same mutation may allow the system to return to the normal
state. Thus, in the analysis of gene regulatory networks through mathematical state
space representations, epigenetic landscapes offer an intuitive depiction of how the
effects of genetic changes are dependent on the dynamic context of the cell. Huang
(2013) appeals to the evidence of normalizing cancer cells via transfer to normal
tissue environments to suggest that there may be differentiation therapies that can
push cancer cells back to the normal state. Huang and Kauffman (2013) also interpret
Lee et al.’s (2012) discovery of the need for sequential application of drugs that we
discussed in the previous section from this perspective: the first treatment is needed
to change network dynamics to a landscape profile in which the second drug can push
the cell back into a normal trajectory.

Although intuitively appealing, it is less clear how the ‘normalizing’ of network
dynamics by means of interventions would work in practice. But an important ther-
apeutic implication suggested by this network perspective is that the most efficient
treatment may target a dynamic state of the network as a whole, rather than specific
disease-inducing causal pathways. Thus, the analysis directs focus away from ‘broken
mechanisms’ that can be easily delineated towards global dynamical states (Gross
2011).

123



Synthese

Although the DST approach emphasizes that the existence of robust macro-
scopic dynamics renders many molecular details explanatorily irrelevant for studies
of many general features of living systems, the empirical applicability of the mod-
els is dependent on extensive gene expression data to bridge the gap between
abstract state representations and empirical observables (Huang et al. 2005, 2009).
Although researchers have succeeded in building dynamical models from experimen-
tal analysis of gene expression profiling for simple regulatory circuits in studies
of insect development (Jaeger and Crombach 2012; Jaeger and Sharpe 2014),
the research is still far from developing multi-dimensional models capturing the
dynamic states of cells involved in multiple coordinated processes. The impact of
the DST approach on future cancer therapy is therefore an open question. In any
case, Huang and Kauffman argue that the DST framework still can offer a fruit-
ful alternative for guiding research and therapy, which is an improvement over
what they describe as “ad hoc, direct interpretation of gene network topologies”
(2013, p. 276).

Among the different network research approaches we have discussed, the Dynami-
cal Systems Theory framework is the one that most decisively differs from traditional
mechanistic strategies. Not only does it call for the experimental investigation of larger
networks as opposed to individual pathways (a perspective all network approaches
share), but in terms of the conceptual analysis of systems, it questions the utility
of the heuristic strategy to approach a system as nearly-decomposable (Bechtel and
Richardson 1993/2010; see also Kaiser 2015). Paradigmatic mechanistic procedures
start by assuming that the behavior of a whole can be understood from the individual
component functions arranged in a fairly linear sequence (Machamer et al. 2000),
and move toward a more complex organization only once a linear structure has been
shown to be inadequate. Yet on the dynamical systems approach, since many dif-
ferent mechanisms can lead to the same attractor state, rather than mapping specific
pathways, the proposal is to focus on attractors (which entail possible system trajec-
tories). Even in the case of the existence of only a small number of attractor states
(e.g., corresponding to different cell types), these attractors emerge from the activity
and dynamical features of the whole network. The two-node network from Fig. 6
notwithstanding—which we merely used to illustrate the basic approach—the DST
approach presumes that a more global representation and analysis of large networks is
required, where important characteristics of network functioning cannot be recovered
from combining the activities of individual network components (component activi-
ties outside the systemic context of the larger network), as a reductionist mechanistic
approach assumes.

4 Discussion

We have presented several examples of network analyses that were published in sys-
tems biology in recent years. To bring out what is distinctive of these approaches,
we have discussed in what respects they align with, extend, or depart from more tra-
ditional mechanistic strategies. Our presentation of examples of network approaches
started with localist analyses of subgraphs and modules within larger networks and
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proceeded to more globalist analyses of dynamical activity in whole networks. To
a first approximation, we argued that localist analyses directly enhance mechanistic
approaches through identification of the ways that mechanisms are organized. Some
globalist approaches, on the other hand, either connect indirectly or induce a departure
from the previously articulated strategies for mechanism discovery. In the following,
we outline the types of relations that can obtain between network approaches and
the mechanistic framework by highlighting distinctive contributions made by network
approaches in each of the cases examined.

Alon’s identification of individualmotifs beganwith the computational screening of
a whole network consisting only of gene regulatory connections to identify unusually
frequent motifs (Sect. 2.1). We argued that his procedure differs from more typical
mechanistic strategies which begin by considering a specific function and then reason
locally about the pathways that realize it. The localist perspective only comes in later
in Alon’s functional analysis of specific motifs, i.e. after the global search for frequent
patterns in the network. Once identified, the motifs were modeled and manipulated
experimentally by relying on the mechanistic strategy of decomposition, assuming
that a motif’s function can be explained in isolation from the rest of the network.
This approach adds to mechanistic methods by providing an alternative route to the
same type of explanation. At the same time, however, it complements the focus on
concrete causal mechanisms with a focus on generalizable design principles that are
independent of specific contexts of implementation.

To characterize larger networks, investigators sometimes invoke graph theoretical
representations including global measures, such as the node degree distribution across
a whole network, which go beyond the arsenal of mechanistic strategies. Discover-
ing clustered nodes (modules) in complex networks using algorithms is relevant for
mechanistic research insofar as they can be identified with specific biological func-
tions. But the definition and thus identification of modules is novel. From a traditional
mechanistic perspective, a module or part of a mechanism is defined by its concrete
internal structure (which underlies its functioning), whereas module identification
within large-scale networks initially does not characterize the specific internal orga-
nization of modules (as the representation of a motif would), but instead identifies
a module in terms of its relatively low number of connections to other modules of
the overall network.5 This strategy enables the identification of modules without any
knowledge about the functions of different system parts or the specific causal nature
of their connections. Instead of properties of specific parts or operations, the focus is
on the relational structures and patterns and their implications for system behavior.
In some cases these module clusters were taken to reveal some global features of the
network. As we saw in Sect. 2.3, the motivation for Ravasz et al.’s (2002) research
was the challenge of combining a network’s functional modularity (segregation into
internally highly clustered modules) with the existence of a few highly connected
nodes, indicating functional dependency across modules. As a possible solution to
this tension they introduced the notion of hierarchical modular networks and based

5 We would like to thank an anonymous reviewer for making this point.
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on experimental evidence about the metabolic network of E. coli showed how various
smaller networks might be integrated into the larger metabolic network.

Graph representations of networks are usually limited to static portrayals of bio-
logical phenomena. De Lichtenberg et al. (2005) provided an interesting way of
incorporating timing information (specifically, timing within the cell cycle) into a
graph representation (Sect. 2.4), and using timing to identify possible mechanisms.
The resulting graph revealed 29 interconnectedmodules in which one ormore proteins
are as being expressed at a specific time. This enabled the researchers to establish that
some modules are assembled just at the time they are needed while in other modules
a central protein binds with different proteins at different phases in the cell cycle. De
Lichtenberg et al. linked these 29 modules to different activities involved in the cell
cycle, thereby treating them as mechanisms. The goal, however, was not to map the
temporal sequence of complete pathways but to relate the timing of different cellular
components so as shed light on their synchronization at the cell (cycle) level. This
instance of research employed conceptual strategies to analyze the dynamic organiza-
tion of networks—computational tools as well as means of visual representation (e.g.,
Fig. 4)—in a way that motivates subsequent analytical exploration and discovery. By
capturing some aspects of activity timing these tools enhance the value of standard
graph-theoretic representations.

Unlike graph theory, dynamical approaches to networks are explicitly geared at
characterizing the temporal character of biological phenomena. Biological systems
constantly change their state either due to activities within the system or in response
to external perturbations. The studies by Janes et al. (2005) and Lee et al. (2012)
showed that the efficacy of drug therapies could be very different depending on the
state the network is in at a given time, so that sequential administration of drugs
could be effective where simultaneous administration would not be (Sect. 3.1). To
interpret and discover such results in the first place, it was useful for researchers to
conceptualize and analyze the system in terms of dynamically changing networks
states, where system components may respond differently when in different states.
The use of statistical tools on high-throughput data allowed investigators to hone in on
putative mechanism components and interactions that warranted further investigation
by classical difference-making methodologies.

The final case analyzed in Sect. 3.2. marks a significant departure from a tradi-
tional mechanistic perspective by rejecting the core strategy of decomposition, i.e.,
the assumption that systems can be understood by investigating systems parts and their
operation in isolation, and that the behavior of the whole can be recomposed from the
parts in a largely sequential fashion. Rather than thinking in terms of specific path-
ways and mechanisms, such global systems approaches push for the analysis of the
dynamics of interconnected networks, revealing possible system trajectories, where
the most efficient treatment for a specific disease may be an intervention on the state
of the whole network (so as to change the system’s dynamical profile consisting in
attractors and epigenetic barriers). Representing biological processes as attractors in
state space rather than connections between specificmolecular entities in amechanism
diagram reveals significant differences in the conceptual approach. A specific attractor
state can be reached bymany different mechanistic pathways. Therefore, the proposed
therapeutic intervention need not target any specific mechanism but the dynamics of
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the network as a whole. The predictive potential of these newer approaches is still
dependent on grounding the dynamic analysis in details of actual biological systems
(such as patterns of gene expression or molecular concentrations in cells). Yet, con-
ceiving of cancer in terms of attractor states has important implications for the view of
what cancer is, as it presents a therapeutic alternative to the focus on specific somatic
mutations or specific molecular pathway-interfering causes.

Apart from the important, although genetic, mechanistic strategies of decomposi-
tion and localization (originally articulated by Bechtel and Richardson 1993/2010),
Craver and Darden (2013) have recently laid out further strategies for mechanism dis-
covery. However, their conceptual strategies, such as modular subassembly, forward
chaining, and backward chaining, come from philosophically investigating traditional
molecular biology and pertain to reasoning about individual pathways. Our discussion
of different instances of network research has covered additional strategies for ana-
lyzing systems, which are geared toward the characterization of complex molecular
networks. This research often starts out with experimentally acquired data about large-
scale networks, so that (although sometimes further experimental steps follow) a good
deal of the intellectual burden is on employing—and even developing—strategies for
analyzing some aspects of the structure and function of complex networks, so as to
provide guidance for further discovery steps. In addition to the use of mathemati-
cal measures and statistical and computational tools, these novel network strategies
include means of visually representing system aspects. Many such representations are
neither mechanism diagrams nor depictions of the whole network. A good example
is the overlap matrix depicted in Fig. 3 (from Ravasz et al. 2002), which zeroes in on
some aspects of system activity, and not only summarizes previous information, but
has the crucial intellectual function of guiding further analysis and discovery. Dynamic
landscape representations like the ones in Figs. 6 and 7 also go beyond mechanism
and network diagrams because the landscapes are derived from a theoretical analysis
of network functioning, and point to system potentialities such as possible therapeutic
targets that can be explored in future discovery.

Our aim in this paper has been to motivate a philosophical analysis of network
approaches as a means increasingly used by life scientists to deal with biological com-
plexity. Throughout the paper we have emphasized the benefits of network approaches
for biology, which use the tools of graph theory and dynamical systems theory. Biol-
ogists have been drawn to these tools as they confronted the challenge of coping with
the complexity of highly interconnected and non-linear biological systems. We have
emphasized both how the various network strategies can be (and have been) used to
complement mechanistic approaches but also how there is already a wide spectrum
of network approaches where some differ from traditional mechanistic strategies. As
these methods and their applications are in constant development, we think that future
careful philosophical analyses can further clarify the types of inferences that these
methods support in the investigation of biological phenomena.
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